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ABSTRACT 2345 i  
Some results recently €ound in the course of 

current research on several buckling problems are 
presented and discussed. These problems are (a) 
initial post-buckling behavior and imperfection- 
sensitivity of spherical and cylindrical shells 
under external pressure (b) initial post-buckling 
behavior and imperfection-sensitivity of toroidal 
shells under hydrostatic pressure and tension (c) 
imperfection-sensitivity of axially compressed 
cylinders with inside or outside stringers (d) 
buckling of a model structure having a continuous 
spectrum of random imperfections (e) dynamic 
buckling of imperfection-sensitive structures and 
(f) buckling of spherical caps under concentrated 
loads. 
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SYMBOLS 

stiffener area 
post-buckling coefficient (see Figure 2) 

shell bending stiffness [E 124:!v2)) 

Young's modulus 
spherical cap rise (see Figure 10) 
stiffener moment of inertia 
foundation moduli (see Figure 7) 
parameter in imperfection spectrum (see 
Figure 8) 
shell length 
1 - (buckle length) 
critical value of E 
classical buckling load per unit length 
circumferential wave number in spherical 
cap buckling 
load 
classical buckling load 

static buckling load of imperfect structure 
dynamic buckling load 
classical buckling pressure 
shell radius (cylinder, sphere, toroidal- 
segment boundary) ; correlation function 
(see Figure 7) 
meridional radius of curvature of toroidal 
segment 
stiffener eccentricity (see Figure 6) 
power spectral density of imperfection 
(see Figure 7) 
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INTRODUCTION 

This paper contains a brief summary of the 
results of some recent and current research on 
several buckling problems. The scope of the 
survey is arbitrarily limited to investigations 
with which the writers have been directly or 
indirectly concerned. 
only of phenomena and numerical results. with all 
the details of analysis omitted. Historical 
reviews of the backgrounds to the various problems 
are not included. nor is a comprehensive 
bibliography of pertinent references provided in 
this survey. 

Discussion will be made 

POST-BUCKLING BEHAVIOR AND 
IMPERFECTION-SENSITIVITY 

The notion of imperfection-sensitivity and 
its relation to the post-buckling behavior of 
perfect structures will play an essential role in 
the problems to be surveyed. The solid curves in 
Figure 1, based on the studies of Koiter'**. 
illustrate several kinds of bifurcations in the 
variation of load with buckling displacement that 
are encountered when buckling of a perfect 
structure Is analyzed as a linear eigenvalue 
problem. 
to be a measure of the amplitude of a unique 
buckling mode corresponding to the buckling load 
associated with the lowest eigenvalue. The first 
two sketches illustrate symmetrical bifurcations, 
for which the initial post-buckling behavior la 
independent of the sign of the buckling displace- 
ment. Only synnnetrical bifurcations occur in all 
of the problems of this paper but asymmetrical 
bifurcations illustrated in the last sketch are 
also theoretically possible. The dotted curves 
show how the applied load varies with displacement 
when the structure contains an initial deflection 
in the shape of the buckling mode. If, as shown 
in the first sketch, the load on the perfect 
structure drops after buckling, then the load on 
the imperfect structure attains a local maximum 
which is lower than the classical buckling load 
of the perfect structure. 
local maximum would be associated with a sudden, 
possibly catastrophic, increase in displacement 
which, in a test, would be characterized as 
buckling. If, as in the case Illustrated by the 
second sketch, the load on the perfect structure 

In each case the abscissa is supposed 

Under dead loading thin 



increarer after buckling, the correrponding 
imperfect structure would exhibit a much milder 
growth of dirplacement as the load reaches and 
exceeds the clarrical buckling load. 
thr perfect rtructurr har an arymmetric buckling 
bifurcation, rnap buckling of thr imprrfrct 
rtructure would be exprcted for one rign of the 
initial imperfection and mild behavior for the 
opporite eign. Becaure the buckling strength8 
of structures characterized by the behaviors 
rhown in the firrt and the last of tha rketcher 
in Figure 1 are influenced by initial 
imprrfrctionr, in r m e  carer markedly so, much 
rtructurer will be called imperfection-rrnritive. 

The extent to which imperfectionr can affect 
the buckling strengths of imperfection-sensitive 
shell structures is shown in Figure 2. 
that the symmetrical post-buckling load displace- 
ment relation is given by the equation 

Finally, if 

Suppose 

P 2 - - 1 + b(t) 
pC 

where Pc is the classical buckling load, 6 is 
the amplitude of the buckling displacement, say 
normal to the shell, and t is the shell thick- 
ness. The coefficient b is then a measure of 
the rapidity with which the load rises or drops 
after buckling. Imperfection-sensitive structures 
would, of course, be characterized by negative 
values of b . Let Ps be the buckling load of 
the imperfect structure when it contains an 

initial imperfection, of amplitude a , in the 
shape of the buckling mode. 
on the right of Figure 2 show how the ratio 
varies with the value of a/t . As originally 
shown by Koiter these curves are governed by the 
equation 

Then the solid curves 

psiPC 

and should really be regarded as correct only in 
an asymptotic sense for sufficiently small values 
of the initial displacement. 

shell structure is probably the long thin-walled 
cylinder under axial compression which, as is 
well-known, may buckle et values of stress that 
are small fractions of the classical buckling 
stress. Unfortunately, this system is not 
described by the simple sketches on the left of 
Figure 2 because it ham a multiplicity of 
buckling mode shapes associated with the 
classical buckling mode. However, a separate 
analysis due to Koiter gives the lower dotted 
curve on the right of Figure 2 for the effect of 
initial axisymmetric imperfections on the 
buckling strengths of such cylinders. 
provides a calibration for the significance of the 
coefficient b in the case of structures that 
have just one buckling mode associated with a 
symmetrical bifurcation. 
b - -1 
sensitivity about as severe as that of a cylinder 
under axial comprersion. 

The most notorious imperfection-sensitive 

This curve 

Thus, a value of 
-*CUI.' preP-n&l;. i-pl;. imperfectfen- 

Note, however, that 

values of b between -.1 and -1 would 
evidently also have quite significant implications 
and even values of b in the neighborhood of 
-.01 
classical onre by amountr that are not entirrly 
negligiblr. 

study carried out on another structure that has 
multiple buckling modes arsociated with ita 
classical buckling load, namely, the rpherical 
shell under uniform external prersure. It has 
long been ruspected that thin structure is about 
a8 imperfection-rensitive ar the Cylindrical shell 
and this har been theoretically verified very 
recently3 on the basis of, again, an asymptotic 
calculation based on Koiter's general theory, 
exploiting the shallow shell equations appropriate 
to very thin shells that btrckle with very =hort 

(9 found for the imperfect sphere having a 
certain checkerboard pattern of initial displace- 
ments is given by the dotted curve just above, 
and nearly coincident with, the curve for the 
cylinder. Attention will now be directed to the 
results of studies of several configurations 
having symmetrical buckling bifurcations with 
just one buckling mode. The point of these 
studies was to discover whether and to what extent 
these configurations are imperfection sensitive 
by calculating the post-buckling coefficient b . 
These calculations were all guided by the general 
theory of post-buckling behavior laid down by 
Koiter. Within the framework of the shell 
theories used (Donne11 or shallow-shell or 
hybrid combination of these) the calculaticus were 
exact. 

could imply buckling load8 rmaller than the 

In pasring, mention can be made of a recent 

wave lengths. The variation of P,/P, Wi'h 

SIMPLY SUPPORTED CYLINDERS UNDER - 
HYDROSTATIC LOADING 

The upper curve in Figure 3 provides tie 
classical hydrostatic buckling pressure pr of 

a cylindrical shell having conventional simple 
support boundary conditions. The theoretical 
results for the nondimensional buckling preasure 

calculated by Batdorf4 on the basis Jf 
PCRL* 

Donnell's equations are plotted against the 
curvature parameter 2 introduced by Batdoyf. 
The results are equally applicable to an isolated 
shell of length L or to a very long shell 
continuous over rigid frames having a spacing of 
L which provide no torsional rertraint to the 
cylinder. In each case, however, pre-buckling 
deformations are neglected. 
figure displays the new results just found5 for 
the post-buckling coefficient b again plotted 
against 2 . As shown, the parameter b is 
different for the two configurations even though 
the classical buckling pressure is the eame; the 
isolated cylinder turns out to be substantially 
more imperfection-sensitive over the low range of 
2 than the cylinder continuous over frames. It 
might be mentioned that there have been previous 
investigations of the post-buckling behavioi of 
cylinders under hydrostatic loading, with results 

The lower part of the 



that could be described as approximate solutions 
for finite post-buckling deformations. The 
present results, in contrast, are asymptotically 
exact solutions for vanishingly small post- 
buckling deflections. It is felt that this 
present kind of solution has greater significance 
and is perhaps more reliable as an index of 
imperfection-sensitivity, 

of sources 
in Figure 3 for comparison with the theoretical 
classical buckling pressures. The extent to which 
theory and experiment disagree in various ranges 
of 2 is In qualitative agreement with the 
degrees of imperfection-sensitivity implied by the 
negative values of b in these ranges. 

The results of buckling tests from a variety 
(as collected by Dow6) are displayed 

TOROIDAL SEGMENTS UNDER HYDROSTATIC LOADING 

The top part of Figure 4 shows results 
recently calculated by Stein and McElman' for the 
classical hydrostatic buckling pressures of 
simply-supported toroidal segments having various 
curvature ratios R/Rx , where R represents the 
radius of the boundary circles and Rx is the 
meridional curvature. The case R/Rx = 0 
coincides with the cylinder just discussed. 
results of recent calculations* of the post- 
buckling coefficient b are displayed in the 
bottom part of the figure. 
implication here is that while the classical 
buckling pressure increases with increasing values 
of R/Rx so does imperfection-sensitivity. In 
other words, increasing the meridional curvature 
of a toroidal shell would not strengthen the shell 
against buckling as much as one might hope purely 
on the basis of a classical buckling analysis. 
Note that as R/Rx approaches 1 from below the 
spherical geometry is attained, for which post- 
buckling calculations on the basis of a unique 
classical buckling mode may no longer be valid, 
and so the curiously shaped curves for 
and .95 should be discounted. It may be 
confidently concluded, however, that, for hydro- 
static loading, imperfection-sensitivity disappears 
only for toroidal segments of sufficiently large 
negative Gaussian curvature. 

The 

The most important 

R/Rx = .9 

TOROIDAL SEGMENTS UNDER AXIAL TENSION 

For positive values of R/Rx a toroidal 
segment under axial tension acquires 
circumferential compressive stresses and is there- 
fore susceptible to buckling. 
calculationse for the classical axial buckling 
force per unit length NC are shown as a function 
of 2 in Figure 5, for several values of R/Rx . 
The post-buckling coefficient b was found to 
vary as shown in the bottom part of Figure 5; for 
each value of R/Rx there is imperfection- 

value for which b goes negative. Several tests 
have been performed by Yao' for the case R/Rx - 1, 

The results of 

==nsitivitp czly f=r ?. l=rg== p.=?, ch- - - 4 * a - - l  
L..S .,.I.LICI.I 

with results shown by the circles. 
specimens were clamped, rather than simply 
supported but his own calculated buckling loads 
for this case were only a little higher than those 
given by the curve in Figure 5. Thus, the dis- 
crepancies between the test results and 
theoretically calculated buckling loads are con- 
sistent with the imperfection-sensitivity implied 
by the negative values of b that were found for 
simply supported toroidal segments in the ranges 
of 2 corresponding to the test specimens. 

Yao's 

STIFFENED CYLINDERS UNDER AXIAL COMPRESSION 

There has been much interest recently in the 
exciting rediscovery of van der Neut's early 
theoretical observation1 O, now well confimed by 
tests, that outside stringers can be much more 
effective than inside stringers in stiffening a 
circular cylinder against buckling under axial 
compression. It has been suggested occasionally 
that classical theories of buckling should be 
reliable for the quantitative prediction of the 
buckling loads of stiffened cylinders regardless 
of whether the stiffeners are inside or outside. 
Recent calculatiod ', however, have shown chis not 
to be so and an example is given in Figure 6 for a 
simply supported cylinder. If torsional stiffness 
of the stringers is neglected, three parameters 
are needed to characterize the stiffening. These 
are the area ratio AS/dt , the bending stiffness 
ratio EIS/Dt , and the eccentricity ratio 
mf where 
center line to the centroid of the stringer, is 
considered to be positive for outside stiffening 
and negative for inside stiffening. The values 
chosen for these nondimensional parameters in the 
present example correspond to only moderately 
heavy stiffening and are shown in Figure 6. The 
curves at the top of Figure 6 give, as a function 
of 2 , the buckling load per unit circumference 
of the stiffened cylinder divided by the 
corresponding quantity for the unstiffened 
cylinder, and were calculated on the basis of 
"smeared-out'' stiffener properties. These results 
imply the superiority of outside over insilie 
stringers. This conclusion, however, must clearly 
be tempered by the results for the post-buckling 
coefficient b which show that the cylinder with 
outside stiffening is generally much more 
imperfection-sensitive than the one with inside 
stiffening. 
coefficient b in this figure is still defined 
with respect to buckling displacements normalized 
by the skin thickness and not by any larger 
effective thickness of the shell-stringer 
combination. Consequently, over a substantial 
range of 2 in the vicinity of 100 it appears 
that the effects of initial imperfections In 
reducing the strength of cylinders with outside 
stringers below the theoretically predicted 
classical buckling loads would be by no means 
negligible. On the other hand, it is interesting 
to note that in the range of high 2 above 1000 
bcth :-si& a-4 =.Jt.?ida etiffezers izducs "..it", 
comparable imperfection-sensitivity and so the 
benefits of outside stiffening would appear to be 

s , the distance from the skin 

It should be emphasized that the 

7--  



quite dependable in this range. In any event, the 
most important conclusion to be drawn is that with- 
out supporting evidence, either experimental or 
theoretical, it would be quite incorrect to assume 
that classical buckling theory is adequate for the 
prediction of the buckling strength of stiffened 
cylinders under axial compression, especially if 
the stiffening is on the outside. 

STRUCTURES WITH RANDOM IMPERFECTIONS 

The kinds of investigations just discussed 
serve to demonstrate whether or not a given 
configuration is imperfection-sensitive but 
indicate only qualitatively the degree of such 
sensitivity; they can not be used to predict the 
actual buckling load of a given structure that is 
imperfection-sensitive. One reason for this 
deficiency is that the initial imperfection 
certainly does not have precisely the shape of 
the classical buckling mode, as assumed in the 
analyses. On the other hand, it does not seem 
very sensible to attempt to develop methods of 
analyses based upon a very detailed knowledge of 
the imperfection in the structure under con- 
sideration. 
to correlate the buckling strengths of imperfect 
structures with appropriate statistical 
descriptions of their initial imperfections. To 
that end the pilot problem illustrated in Figure 7 
has recently been studied12. In this problem an 
infinitely long column rests on a nonlinear 
"softening" foundation-and is supposed to have an 
initial displacement W that is assumed to be a 
stationary random function of position along the 
length of the beam. The perfect structure has a 
continuous spectrum of buckling loads corresponding 
to the spectrum of buckle modes sin x/k where I 
can have any value. The critical buckling load Pc 
however, occurs for a particular value kc of this 
wave-length parameter. It is evident that not only 
will initial imperfections in the shape of the 
critical buckling mode influence the actual static 
buckling load of the imperfect structure so will, 
to some extent, imperfections having any other 
shape. It is supposed that the mean-square 
imperfection xz is known, as is the 
correlation function R of the imperfection 
(considered a function of the nondimensional 
parameter E - x/kc ) ,  The associated power 

spectral density S($) is defined conventionally 
as the Fourier transform of the correlation 
function. The kinds of results that were found 
for this problem (by means of approximate 
techniques that lean heavily on the so-called 
method of equivalent linearization) are 
illustrated in Figure 8. 
is one choice that was made (arbitrarily) for the 
correlation function of the imperfection, and the 
associated power spectral density, both 
characterized by the single parameter k in 
addition to the mean-square imperfection Tz . 
The mean-square imperfection combines with the 
parameters of the foundation modulus to-give the 
pertinent nondimensional parameter kgd'lkl 8s a 
measure of the magnitude of the imperfection, and 

A more useful goal might be to attempt 

Shown in this figure 

k serves as a measure of the spectral content of 
the imperfection. The curves show the calculated 
values of the ratio of the buckling load of the 
imperfect structure to that of the perfecr 
structure as a function of these two parameters. 
It is interesting to note that the buckling loads 
are relatively insensitive to k over a sub- 
stantial range. This tends to encourage the hope 
that quantitative predictlops of the buckling 
strengths of imperfection-sensitive structure8 
may eventually be possible on the basis of the 
knowledge of a few statistical parameters 
descriptive of the imperfections. 

Noted in Figure 8 is an interesting 
mathematical difference between these results for 
a structure having a continuous spectrum of 
buckling modes and the earlier ones for structures 
having unique buckling modes. 
case the difference between the buckling loads of 
the perfect and imperfect structures is, 
asymptotically, proportional to 
continuous-spectrum case this difference is 
proportional to (K)4/5 . 

In the one-mode 

(x)2/3 : in the 

DYNAMIC BUCKLING OF IMPERFECTION-SENSITTE 
STRUCTURES 

The general approach of Koiter has recently 
been extended by the ~ r i t e r s ~ ~ , ' ~ ~ ' ~  to handle the 
buckling of imperfection-sensitive structures under 
a variety of time-dependent loading conditions. 
General results intended to serve as approximate 
guidelines for the analysis and design of such 
structures have thereby been obtained and Just one 
example of this kind of result is illustrated in 
Figure 9. Consider step-loading of an 
imperfection-sensitive structure of the type that, 
when perfect, bifurcates symmetrically, as 
illustrated,and consequently has a static buckling 
load Ps less than Pc if it is imperfect. The 
results of the dynamic analysis show that the same 
structure having the same imperfection would have 
a dynamic buckling load PD given by the graph in 
Figure 9. Here the ratio of the dynamic to the 
actual static buckling load of the imperfect 
structure is plotted against the ratio PslPc , 
which, of course, equals 1 for the perfect 
structure and is smaller the more imperfect is 
the structure. 
the dynamic buckling load is always less than the 
static buckling load, but even for very imperfect 
structures is never less than 70% of the static 
buckling load. 
implication of this curve is that it provides an 
estimate of the dynamic buckling load just an the 
basis of Ps/Pc , and does not require a 
knowledge of the initial imperfection. 

It is seen that for step-loading 

The most important and useful 

SPHERICAL CAP UNDER CONCENTRATED LOAD 

The last buckling problem to be discussed in 
this survey differs in several respects from all 
of those previously mentioned. The pre-buckling 
stress state is not triviai, but requires tne 
solution of a nonlinear problem: the buckling 
loads themselves have not been previously 



. .  

determined; and in all likelihood the structure 1s 
imperfection-&sensitive, although this remains to 
be established theoretically. The clamped shallow 
spherical shell shown in Figure 10 is subjected to 
a load P at the center; the solid curve shows 

'crR how the value of the load parameter - 2nD 
associated with buckling varies with the con- 
ventional geometrical parameter X . This curve 
gives the lowest of the loads given by the 
separate curves associated with buckling in 
various numbers n of circumferential waves. The 
case n - 0 for axisymmetric buckling has 
previously been obtained by Mescall16 and 
corresponds to a local maximum in the variation 
of load with axisymmetrlc displacement, 
other curves were found'' by discovering 
bifurcations of axisymmetric equilibrium paths 
into non-axisymrnetric branches. The mode shapes 
associated with the cases n = 3, 4, and 5 , when 
combined with an axisymmetric dimple, would 
correspond to deformed areas that are roughly in 
the shapes of triangles, squares, and pentagons, 
respectively. Such deformation shapes have in 
fact been observed in the past during tests on 
spherical shells under concentrated loadsla* 19. 
There does not, however, appear to be precise 
experimental information concerning a critical 
value of load at which non-axisymmetric 
deformations first begin to appear, nor has any 
snapping behavior been discovered in conjunction 
with their appearance. Indeed, observation has 
been madela of a steady progression of .three, four, 
and five lobed deflection patterns under increasing 
load and this correlates with the competition shown 
in Figure 10 among the modes for n - 3, 4, and 5. 
All of these facts suggest that the bifurcation 
into non-axisymmetric deformation is associated 
with increasing values of load and verification of 
this imperfection-&sensitive behavior on 
theoretical grounds is now in progress. It may be 
noted that the results for A large are 
applicable to a full spherical shell of very small 
thickness. 
opposite concentrated loads may be expected to 
begin to exhibit a transition from axismetric to 
non-axisymmetric deformation, at a value of 

The 

Thus the full sphere under equal and 
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FIG. 3 CLASSICAL BUCKLING AND IMPERFECTION - SENSITIVITY 
OF SIMPLY -SUPPORTED CYLINDERS UNDER 
HYDROSTATIC LOA Dl NG 
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FIG. 6 CLASSICAL BUCKLING AND IMPERFECTION-SENSITIVITY OF SIMPLY- SUPPORTED 
STIFFENED CYLINDERS UNDER AXIAL COMPRESSION 
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